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The effects of both viscous and pressure stress work are considered in laminar 
natural convection on flat surfaces. Whereas in previous investigations only 
viscous stress work effects were studied, it is established here that pressure work 
effects are generally rather more important both for gases and liquids. Variations 
in the properties of the fluid outside the natural convection boundary layer are 
shown to occur inevitably in this problem and are found to lead to effects 
comparable with those produced by pressure work. Property variations in the 
boundary layer itself are also found to be of importance. Such variations, both 
inside and outside the boundary layer, have been ignored in previous studies. 
Examples of flows are discussed in which the fluids are either perfect gases or 
fluids undergoing small changes in temperature and pressure. For both of these 
fluids, the effects of conditions of either constant temperature or constant en- 
tropy in the fluid outside the boundary layer are examined. 

1. Introduction 
A general statement of energy conservation for a viscous, heat conducting, 

compressible fluid can be deduced (Howarth 1953) by the balance of the rates 
of convection of specific internal and kinetic energies into an elementary volume 
of fluid compared with the rate of heat conduction into the volume and the rates 
of working of the body force, the pressure and the viscous stresses on the volume. 
Numerous alternative forms of the energy equation follow from this statement 
and are obtained by replacing internal energy by some other desired property of 
state. Furthermore, the kinetic energy term usually is eliminated by appeal to 
the momentum equation. However, the point to be noted is that in all such 
alternative forms there remain explicitly only certain parts of the terms repre- 
senting the rates of working of the pressure and viscous stresses, In  the following 
discussion, such remaining parts will be referred to, somewhat loosely, as the 
effects of pressure and viscous stress work. 

In the discussion and analysis of natural convection flows, such pressure 
and viscous stress work effects are generally ignored. However, the influence 
and importance of viscous stress work effects in laminar flows have been ex- 
amined by Gebhart (1962) and, more recently, by Gebhart & Mollendorf (1969). 
Both of these investigations considered specifically flows over semi-infinite 
flat surfaces set parallel to the direction of the gravity vector. Whereas Gebhart 
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(1962) considered flows generated by plate surface temperatures which vary 
as powers of x (the distance along the plate surface from the leading edge), 
Gebhart & Mollendorf (1969) considered flows generated by plate surface tem- 
peratures which vary exponentially in x. In  both of these investigations it was 
established that the importance of viscous stress work is determined by a length 
scale equal to c,/qP, where p is the volumetric coefficient of thermal expansion. 
Since this length scale is usually extremely large for most fluids, it  was shown that 
this led to the conclusion that viscous stress work effects are very slight in most 
situations. For example, in the case of constant surface temperature, Gebhart 
(1962) showed that viscous stress work effects are governed simply by the ratio 
of x and the above large length scale. It is easy to show that this ratio is the Eckert 
number for this flow. 

In  both of the above investigations the term appearing explicitly in the 
energy equation used which stems from the rate of working of the pressure 
is ignored. The effect of the inclusion of this term was not considered by Gebhart 
(1962), whereas in Gebhart & Mollendorf (1969) (and in Gebhart 1969) the view 
was expressed that such pressure work effects can be ignored for liquids and, as a 
result, the subsequent analysis proceeded with such fluids in mind. Because of 
the lack of a thorough discussion of this view, it is felt that the role of pressure 
work in natural convection warrants further study and this is undertaken here. 
It is shown that pressure work effects are a t  least as important as (and in most 
cases rather more important than) those of viscous work for both liquids and 
gases. 

In  the studies of both Gebhart (1962) and Gebhart & Mollendorf (1969) no 
account was taken of variations of state properties in the fluid outside the moving 
boundary layer. This neglect is in keeping with their use of the Boussinesq form 
of the boundary-layer equations. However, one of the prime requirements for 
the correct use of the Boussinesq approximation is that the vertical extent of 
the fluid under consideration must be much less than any scale height character- 
istic of fluid-property variations (see, for example, Spiegel & Veronis 1960). 
This requirement cannot be met in the present context because the hydrostatic 
condition will be shown to introduce under all circumstances the above scale 
height cJqp as a length scale characterizing at least some of the relevant fluid- 
property variations. 

In  order to obtain some comparison with the results of previous investigations, 
only flat-plate laminar natural convection is discussed here. For this configura- 
tion, the paper sets out to show that pressure and viscous work effects, together 
with the effects of property variationsin the stationary fluid outside the boundary 
layer, are all governed by the same length scale c,/qP. Thus, one may not include 
viscous stress work effects and ignore the other two effects, particularly since i t  
will be shown that the latter are generally rather more important than the 
former. However, it should be remembered that, except possibly for a natural 
convection flow which occurs over an exceptionally large development length x, 
all three effects will usually be of little significance. 

In  view of the above points, it  appears to be inevitable that we consider the 
fluid to be of variable properties and that the necessary equations of state and 
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transport properties be examined with some care. In  the present investigation 
the fluids studied are taken to be either a thermally and calorically perfect gas 
or a general fluid undergoing small changes in temperature and pressure. Two 
cases of fluid-property variations outside the boundary layer are discussed : 
those for which the temperature and, alternatively, the entropy are constants. 
Together with these property variations, two reasonably practical plate surface 
temperature conditions are discussed. 

2. Boundary-layer equations and transformations 
We consider a steady, two-dimensional, laminar fluid flow a t  high Reynolds 

number over a semi-infinite flat surface. Cartesian co-ordinates (x, y) are chosen 
to lie along and normal to the surface, respectively, and (gx,g,) are the com- 
ponents of the gravity vector in the (x, y) directions, respectively. We shall 
assume throughout that Ig,/gxl is a t  most of order unity so that the pressure 
gradient normal to the surface is zero according to first-order boundary-layer 
theory. Thus, the surface may be assumed t o  be tilted but, if so, not too far from 
the vertical, so that flows over surfaces which are almost horizontal (Stewartson 
1958) are excluded from the discussion. 

The boundary-layer continuity and momentum equations are, in the usual 
notation, 

a a 
- (pu) + - ( P V )  = 0, 
ax ay 

Conditions exterior to the boundary layer (denoted by suffix e), at which the 
exterior fluid is at  rest, yield 

A useful and entirely general form of the energy equation (Howarth 1953, 
p. 56) is, in Cartesian tensor notation, 

p,g,-dp/dx = 0. (3) 

(4) 
where P = -P-l (aP/aT), I 
and CD is known as the viscous dissipation funbtion. Whilst CD represents that 
part of the viscous work necessary for the correct balance of energy in this par- 
ticular form of the energy equation, the term TPDp/Dt represents the cor- 
responding part of the pressure work. It is the latter term which is ignored by 
Gebhart (1962,1969) and Gebhart & Mollendorf (1969). In  the steady boundary 
layer this energy equation becomes 

We define a stream function @ such that 
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and a non-dimensional temperature difference 

e = (T - T , ( ~ ) ) / A T ( ~ ) ,   AT(^) = T,(X) - T,(X). (7) 

We change the independent variables ( x ,  y) to (5, r ) ,  where (Sparrow & Gregg 
1958) 

the suffix r refers to any convenient reference condition and (AT), is any con- 
venient reference temperature difference. Equation (3) is used to eliminate the 
pressure-gradient term in ( 2 )  and (5) and, on writing 

the momentum and energy equations (2) and (5) become 

e(c, 0 )  = 1, e(5, CO) = 0. ( 1 0 4  

Primes denote differentiation with respect to 7 and the parameter L (which 
has the dimensions of length) is defined as 

L = cpr/(  -gzPr)* (11) 

In  (lOc), the effects of viscous work and pressure work are found to be pro- 
portional to the first and second terms in square brackets, respectively. Whilst 
the first term is of orderfn2, the second term is of orderf’T/(AT),, so that it would 
appear that for both liquids and gases the effect of pressure work is not neces- 
sarily small in comparison with the effect of viscous work. Furthermore, both 
stress work terms are seen to be multiplied by c/L. Thus we note that the im- 
portance of the two stress work terms (relative to those terms representing con- 
vection and diffusion of heat) is determined largely by the nature of the T, and 
AT variations. These points will be examined in detail in the following sections. 

On a pedantic note, 7 can be re-written from (8) as 

Here, 

is a Reynolds number 
(Ostrach 1964), where 

Re = PrufxlPr (13) 

based on the characteristic free convection velocity uf 
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Defined thus, 7 fits conveniently within the canon of compressible boundary- 
layer theory. Furthermore, from (1 1) and (la), 

CIL = uy/cnr(AT)r, (15) 

which is the Eckert number based on uf (Ostrach 1964). 
Since cpr/gpT typically has values of order 104m and 106m for air and water, 

respectively, a t  atmospheric temperature and pressure conditions, it is to be 
appreciated that in most cases of natural convection on flat plates c/L < 1. 
Therefore, in the following study, we shall obtain solutions to (10) to first 
order in c/L only. 

3. Equations of state and transport properties 
The two equations of state to be used are, first, that for a thermally perfect 

gas and, second, that for a general fluid undergoing small changes in temperature 
and pressure. In  the latter case, owing to the order of accuracy required in the 
solution of (lo), it is found to be necessary to consider this equation of state in 
rather more detail than is usually the case in natural convection studies. 

For the thermally perfect gas, 

p ~ p T ,  $ = 1/T. (16) 

Since p is constant across any cross-section of the boundary layer, we obtain 
without any additional approximation 

For the general fluid, we assume p = p(T,p) and expand about the reference 
condition r to second order in small quantities. Let 

K = P-l (aPlaP)T (19) 

and 

where T' ,p t  and AT/T,are all small compared with unity, and 8is at  most of order 
unity in the boundary layer but 8 = 0 in the exterior fluid. We shall find in the 
following section that the leading terms in expressions for T' and p' are of order 
c/L. Consequently, in view of theremarks made at  the end of the previous section, 
we see that we need to obtain the relation corresponding to (17) to first order in 
T' and p' .  Thus, we obtain 
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Because of the form of (lo), the relation corresponding to (18) need be obtained 
to zeroth order in T' andp' only. Since ,!3 = /3(T,p), we expand the latter to first 
order in small quantities and obtain, to zeroth order in T' andp,', 

Note that there are three variables, T',  p' and ATIT,, which have been used to 
obtain (21). In  the square-bracketed term of this result, it  is seen that a term of 
first order in ATIT, has been included in addition to the first-order terms in T' 
and p'. There are two reasons for this, the first being that in practical circum- 
stances i t  is likely that AT/Tr is a t  least as large as or larger than T' and p'. 
The second reason is that, for one form of ATIT, to be studied presently, we 
shall obtain from this particular term in AT/% a significant term of order T'. In  
the considerably simpler analysis leading to ( 2 2 ) ,  terms of order ATIT, may be 
safely ignored since the right-hand side of this relation is likely to be dominated 
by the first term, %/AT. 

Although derived with liquids in mind, (21) and ( 2 2 )  apply to any fluid for 
which any one property of state is a unique function of any other two state pro- 
perties. Since for a thermally perfect gas 

we see that now (21) reduces to (17) ,  at least to the order of the known terms in 
(21), viz. (21) becomes 

Similarly, (22) reduces to (18) since, to zeroth order in LJL, q/q = 1. However, 
for a liquid such useful simplifications are not always possible. For example, for 
water a t  atmospheric pressure and 293 OK (Reynolds 1971, p. 641) 

Except for and AT variations, which will be discussed in the following 
section, the remaining terms to be determined in (10) involve p, cP and k. In 
describing these properties for a gas, we shall assume for simplicity that 

,ucc T", cP = constant, Pr = constant. (26) 
Thus, without additional approximation, we obtain 

For the general fluid undergoing small changes in properties, we assume that 
,u = p(T) ,  cP = cP(T) and k = k (T)  and, in keeping with the approach resulting 
in (21) and (22), expand about the reference condition r to first order in small 

Tdk 
quantities. Let 

T dcp 
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To first order in T' and p' we obtain 

4. Exterior conditions and surface temperature variations 
As mentioned earlier, exterior property variations contribute terms in (10) 

which can be comparable with, or even greater than, the stress work terms in the 
energy equation (10c). Two simple cases are studied here of representative ex- 
terior property variations which contribute effects comparable with those of 
stress work. The cases are those for which, first, temperature and, second, en- 
tropy are constants. Thermally and calorically perfect gases and general fluids 
undergoing small changes in state are considered for each of these two cases. 

For convenience in the following analysis, we write 

x = </L. ( 30) 

The reference conditions r are taken to be those at  the plate leading edge in 
the exterior fluid. 

We consider first the case of the thermally and calorically perfect gas. Using 
the hydrostatic condition (3),  together with the equation of state (16), we obtain 
for the two cases 

Y _ -  for s, = constant. (32) T, 
T, Pr Pr 

In  order to obtain the results (32), use has been made of the thermodynamic 
relation 

T d s  = cpdT -PTdplp. (33) 

The results (31) and (32) for gases are valid for all values of X .  Such accuracy 
may not be achieved for more general fluids. However, we recall that we require 
exterior property variations to first order in X only. Thus, on repeating the pro- 
cedure used earlier to obtain (21), together with the use of (3) and ( Z O ) ,  we obtain 
for a general fluid undergoing small changes in state 

T' = 0, ~ ~ p ~ p '  N p' N - a X + O ( X 2 )  for T, = constant, (34) 

(35) 
T' E - X + O ( X 2 ) ,  p' N ( p r T , - ~ ) X + O ( X 2 ) ,  

N - a X  + O ( X 2 )  for s, = constant. 
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Here P' = Pe/Pr-  1, a = (KPC,lP)r. (36) 

For the calorically and thermally perfect gas a = y/ (y-  1),  so that for this fluid, 
to order X ,  equations (31) and (32), and (34) and (35) are in agreement. 

The two cases considered so far of constant exterior temperature and constant 
exterior entropy result in exterior property variations which are governed solely 
by the length scale L. This general characteristic will be obtained whenever one 
property of state is chosen to be constant, since it is then the hydrostatic con- 
dition (3) which is alone capable of introducing a length scale (in this case L)  into 
the problem. The remaining relationship needed to specify the exterior property 
variations is provided by the purely thermodynamic relationship between two 
properties of state which results from the choice of a third state property being 
a constant. As an alternative to the above constant state property approach, the 
exterior property variations can be determined if one of them is specified. Thus, 
for example, a temperature stratification may be chosen as a function of </I 
(where the length scale 1 need not be of the same order as L) .  For the more likely 
practical situation in which 1 << L, we see from (10) that temperature stratifica- 
tion effects will dominate completely the stress work effects. On the other hand, 
should the unlikely circumstances arise in which E 9 L, the hydrostatic condition 
(3) will still introduce L as a scale height for pressure (althoughp will depend on I 
as well now), thus affecting (10) to  order </L through equations such as (27) and 
(29). Thus, the important point emerges that, unless imposed temperature 
stratifications completely dominate stress work, there will in general be a t  least 
an exterior pressure variation which will produce effects comparable with those 
of stress work and which must be included in any considerations of stress work. 

A point concerning the stability of the possible forms of exterior property 
variations should be mentioned. Stability criteria require (see, for example, 
Landau & Lifshitz 1959, p. 9) that the entropy increases with altitude. The 
above constant entropy fluids are therefore neutrally stable and it is easy to 
show that the calorically and thermally perfect gas a t  constant temperature 
is stable. No such general result can be demonstrated for the general fluid. There 
remains a number of other common functions of state which might be subjected 
to the constant state property approach. Pressure being constant must be 
excluded since the hydrostatic condition (3) ensures a pressure variation. Density 
might be held constant, but it is easy to show that for the calorically and ther- 
mally perfect gas this leads to instability. Consequently, conditions of constant 
temperature and constant entropy appear reasonably satisfactory from the 
stability viewpoint. Furthermore, since exterior property Variations have been 
shown to occur inevitably within the context of this stress work investigation, 
these two cases have the advantage of not overly complicating the investigation 
by the introduction of a further length scale 1. 

In  addition to the exterior property variations discussed above, two simple and 
representative cases of surface temperature variations are considered. These are, 
first, a surface temperature variation which results in 4 T  being maintained con- 
stant and, second, a constant surface temperature. For these two cases 

4T/q = (4T)Jq for A T  = constant (37) 
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and 

Thus for Te constant AT is constant, whereas when s, is constant, both of the 
above AT variations must be considered. 

5. Expansions for X < I 
Following the discussions of the previous section, three cases of exterior 

properties and AT variations are to be considered for both perfect gases and 
general fluids. These are 

I (i) T, = z = constant, 
(ii) s, = constant, AT = (AT), = constant, 

(iii) se = constant, 

T, = constant, so that AT = (AT), = constant, 

T, = constant, so that AT = (4T) ,  - 27,([T,/c] - I). 

(39) 

Since we have chosen for simplicity to consider exterior properties and AT 
variations which are governed by the single length scale L (which is also the 
length scale governing stress work) we see that (10) can be written entirely in 
terms of the independent variables (7, X ) ,  the latter variable being generally 
small compared with unity. 

We shall consider the algebraically simpler case of gases first. We expand the 
dependent variables f and 8 in the forms 

(40) 1 f(7,X) =f0(7)+Xf1(T)+O(X2), 
O(7, X )  = OO(7) f X U 7 )  + 0 ( X 2 ) *  

Expressions for the additional dependent variables contained in (10) are found 
from (17), (18) and (27) to zeroth and first orders in X as required. We obtain 

(AT),/AT = 1 + O ( X ) ,  (41 4 
where B(7) = +WT,,/T,} eO1°-l. (41 e )  

The dependent variables A ,  C and D are given for the three cases in table 1 below. 
On using the above expansions, (10) reduce to 

} (42) 
(Bf:)’+3fof;-2fh:+60 = 0, fo(0) =fh(o) =fi(m) = 0; 

(B8,3’/Pr+3f08h = 0, 8,(0) = 1, ~o(co)  = 0; 

Pr-l(B0; - BC8;)’ + 3f0e; + 7f1& - 4fp1 - [4f,390 + D)] + 4Bf;2 = 0, 

(BfI-Bcfl;)‘+3fof’;+7f1f~-8f~f;+81+A = 0, fl(0) = fp) =f;(.o) = 0; 

e,(o) = e1(w) = 0. 
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L 

0 

TABLE 1 

Equations (42) and (43) reduce? to  those of Gebhart (1962) (his isothermal 
surface case) if the requirements B = 1 and A = C = 0 are met and if the term in 
square brackets in the equation (43) for O1 is ignored. With the approximation 
that w = 1 the requirement that  B = 1 is met but, even with this rather restrictive 
approximation, the further requirements that A = C = 0 cannot be obtained (see 
table 1). It will be appreciated that the finite values of the variables A and C 
arise because of variations in the exterior and plate surface conditions and these 
effects are ignored by Gebhart (1962). According to the discussions of the pre- 
vious section, we see that it is not possible to  choose a combination of exterior 
conditions such that both A and C are zero simultaneously. The term in square 
brackets in equation (43) for O1 occurs because of the combination of pressure 
work effects (contributing an amount 4fh(00 + T,/(AT),))  and exterior and plate 
surface variations (contributing an amount 4fh(D - T/(AT)?)) .  Together with 
the latter effect, pressure work effects are neglected also in Gebhart’s analysis. 
It is seen from table 1 that, in most cases, the values of A, C and D (and the 
pressure work term) are not small compared with viscous work effects. 

Inherent in both the analysis of Gebhart (1962) and that of Gebhart & Mollen- 
dorf (1969) is the assumption that (AT),/T, < 1, the Boussinesq form of the boun- 
dary-layer equations being used as a starting-point for their analyses. I n  order 
to obtain a further comparison with Gebhart’s (1962) analysis, we shall also 
make this assumption in the subsequent discussion. For convenience, we write 

F = (AT),/T,. (44) 

Clearlyf,,, 8, and B in (42) can be expanded in integer powers of e, e.g. 

However, we see from table 1 that the equations (43) for fl and 0, contain terms 
involving s-l, eo, el and higher positive powers of E .  The terms in F--1 arise pri- 
marily because of pressure work contributions and also because of the chosen 
surface temperature variations. I n  order to accommodate such terms in a 
formal expansion procedure, it is necessary to re-phrase (10) and the expansions 
(40) and (41) in terms of independent variables 7 and X/e .  I n  view of the very 

t A slight difference between the equation (43) for 8, and Gebhart’s corresponding equn- 
tion is explained by the fact that Gebhart carries out his expansions in terms of 4X. 
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and 

where 

large values of L mentioned earlier, in most practical situations X / e  < 1. Con- 
sequently, we write 

large values of L mentioned earlier, in most practical situations X / e  < 1. Con- 
sequently, we write 



(i) 
A" 0 

(ii) 

0 

(iii) 

6 0 0  

TABLE 3 

In  view of the expansion procedures used to obtain approximate equations of 
state for general fluids, i t  is necessary to adopt expansions of the forms (45), since 
once more pressure work is found to contribute terms of order X / e  in (10). How- 
ever, using (21), (22) and (29) we find that, for the general fluid, in place of the 
expansions (46), 

(AT),/AT = 1 +O(X/e) ,  

1 w 
P2 aT p r 

( 5 2 f  1 

1 (53) 
where R,(T) = (I +- (-) ) coo, Bl(T) = (PrT,-a) ooo,  

F ~ ( T )  = be,,, Bl(7) = ( P r T 7 - C )  600. 

In  all cases it is found that C, = Go = 8, = 0. The remaining dependent variables 
are listed in table 3 for each of the three cases. For the general fluid, the above 
expansions used with (10) yield (47) and (49) unchanged (except that Pr, re- 
places Pr),  whereas (48) and (50) are replaced by 



689 

+ 7(f11%0 + f l o  4 1 )  - 4(f& 4 1  +f& 010) + 4 f 2  - 4f&dQoo + -& - p1) 
- 4f&Do = 0. 

The boundary conditions are again given by (51). 
Equations (54) and (55 )  reduce to (48) and (50) in the case of a thermally and 

calorically perfect gas with transport properties specified by (26). This may 
be established by the use of (16) and (23) and the following identities: a = c = w,  

Equations (47) are the familiar equations of Pohlhausen (1921). In  the suc- 
ceeding equations, pressure work effects, together with exterior and surface 
property variations acting only through the equations of state (to produce A ,  
and Do), contribute the forcing effects for the terms of order X / e  (i.e. flo and 
el,). The remaining information necessary for the determination of these terms 
is provided solely by Pohlhausen's equations, so that the forms of the variations 
in the transport properties of the fluid are immaterial to this order. Compared 
with these effects, we see from (50) and (55) that viscous work effects (which 
contribute the term 4fi2 to the equations for ell) play a secondary role, con- 
tributing to terms of order X, i.e. fll and &. To this latter order, however, we 
find in addition to viscous work effects a complicated combination of effects 
due to pressure work and exterior and surface property variations as well 
as those due to property variations inside the boundary layer. Consequently, 
the equations (50) and (55) forf,, and ell, although of an order directly compar- 
able with those deduced by Gebhart (1962), are rather more complicated than 
his. Prom the above discussion and an examination of the data given in tables 2 
and 3, it appears to be extremely doubtful whether circumstances could be found 
for any fluid such that (50) and ( 5 5 )  could be reduced to the corresponding 
equations of Gebhart (1962). 

b = 0, a = y / (y -  1). 

6. Results 
Flows in air and water have been studied by numerical calculation. The 

following data were assumed to hold for air a t  atmospheric temperature and 
pressure conditions : 

For water a t  atmospheric pressure and 293 OK, transport properties and cp data 
have been obtained from Kaye & Laby (1956, pp. 36, 53, 56) whilst the data for 
p and K have been taken from Reynolds (1971, p. 641). Thus, the values used 
for water properties are 

y = f, w = 0.76, Pr = 0.72. (56) 

Pr = 7.0, a = -7-2,  b = -0.042, c = 0.616, I 
(a,) = 0 . 7 9 5 ~  ;;IBzp ' rl) = 15.13, P 3'. 

PT = 6.1 x lo-', = 9.2, 

44 F L M  62 

Stress work eSfects in laminar natural convection 
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( W r i T r  f ; ( o )  - e m  f I ( 0 )  - o;(o) 
[ (i)  0.68459 0.51266 1.24045 0.73996 

0.1 (ii) 0.68459 0-51266 1.63063 0.77931 1 ( i i i )  0.68459 0.51266 1.75519 0.88671 

0.69245 0.52001 1.23923 0.80427 
0.2 ( (11) (i! 0.69245 0.52001 1.65623 0.79610 

0.94171 1 ( i i i j  0.69245 0.52001 1.81446 

TABLE 4. Pr = 0.72 (for other data see ( 5 6 ) )  

The Rung-Kutta-Merson method was used throughout the numerical inte- 
gration procedures. Results of the solutions to (42) and (43) are given in table 4 
for the three cases studied, property data being given by (56 )  and values of 
(AT),/T, of 0.1. and 0.2 being selected. The property data of ( 5 6 )  were used 
again in the solutions of (47)-(50). Results of the latter solutions are given in 
table 5 and graphs of the perturbation functions of f ’  and 8 are presented in 
figures 1 (a) and (c). The results of the solutions of (47), (49), (54) and (55 ) ,  using 
the property data for water (equations (57)), are included also in table 5 whilst 
the corresponding graphs of the perturbation functions off’ and 8 are given in 
figures 1 (b )  and ( d )  . 

On comparing figures 1 (a) and (c) with figures 1 ( b )  and (d )  one sees that the 
perturbation functions up to and including those of order X / c  (carrying sub- 
scripts 00, 01 and 10) show similar trends, the differences in relative magnitudes 
between the graphs for air and water being reflected in the differences in the 
relative magnitudes of the corresponding data of table 5. However, the graph of 
el,, case (i), for water (figure Id) shows a rather curious kink in it which is not 
present in the corresponding graph for air. I n  contrast, the data of order X 
(subscript 11) show considerable differences between the cases for the two fluids. 
Whilst the graphs off for air (figure 1 a) are, on the whole, the mirror image of 
those for water (figure 1 b) ,  f i,, case (iii), for water (figure 1 b)  shows an unusual, 
rapid but small oscillation close to 7 = 0. The graphs of 8,, for both air (figure 1 c )  
and water (figure Id)  have similar trends near 7 = 0 but for water 8,, changes 
sign a t  larger values of 7, this behaviour not occurring in the cases for air. Without 
a considerable amount of numerical analysis it is not possible to determine the 
causes of these differences, although it seems likely that they lie in the differences 
in property variations between the two fluids. 

It will be seen in table 5 t,hat, in both of the examples of case (ii) presented, 
bothf’;,(0) and B;,(O) are zero. I n  fact, the solutions of (49) for case (ii) conditions 
(in which the forcing terms A ,  and Do are both zero) are 

( 5 8 )  

This result holds true for all values of the Prandtl number, that is to say, no matter 
what the fluid. The term A ,  is zero whenever the temperature difference AT is 
constant (as it is in all cases (i) and (ii)) and Do is zero because the effects of 
pressure work and exterior temperature variation cancel exactly. The pressure 
work effect to this order depends only on the Prandtl number, being determined 

fl0 = B,, = 0. 
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Pr = 0.72 8;,(0) = - 0.50463 O;,(O) = 0.30024 

TABLE 6. Gebhart’s (1962) results. Because Gebhart (1962) carried out his expansions 
corresponding to (45) in powers of 4X, O;,(O) is obtained by multiplying Gebhart’s function 
$;Co, by 4. 

by the solution of (47) alone. Thus it would appear that the condition of constant 
entropy is alone capable of creating an exterior temperature distribution such 
as to cause this cancellation. For example, it is easy to show that the only 
exterior temperature variation which will result in cancellation is, to order X, 
dT‘ldX = - 1. Now, this requirement, together with the use of the hydrostatic 
condition (3) and the definition of an unknown function of state 2 = z (T ,p) ,  
say, such that x be constant, results in the requirement that x must satisfy 

Comparison of this result with (33) suggests that one may, in all circumstances, 
identify z with s. 

Various simplifications to the description of property data for water a t  the 
above conditions (equations (57)) have been investigated. For example, if the 
terms in (a:/@) ( a ~ / a T ) ~  are ignored (see table 3), the results forf’;,(O) and O;,(O) 
are found to differ from those given in table 5 only in the fifth decimal place. 
Thus, whilst it appears to be permissible to ignore the effects of K variations 
on terms inp‘ in (lo),  the same probably cannot be said for the terms in p‘  in (29) 
since the latter involve K through a: and here a is not small compared with unity. 
Another obvious possible simplification is to ignore all terms in PT-c  (see 
equation (53) for El and el in table 3). Compared with the results of table 5, 
this is found to result in changes of no more than 2 yo in &(O) and f;,(O), the 
corresponding changes in O&(O) and O;,(O) being no more than 17 and 4y0, 
respectively. Finally, acting on a suggestion of Maslen (1958), the effects of 
ignoring cp and k variations with temperature have been examined. Setting 
b = c = 0 in (53) and table 3 is found to produce variations in f ; , (O) ,  f;,(O), 
O&(O) and O;,(O) which are almost the same as those produced by setting 
PT-c = 0. Consequently, it would appear that such simplifications to PT, b 
and c are not realistic, a t  least as far as OA,(O) is concerned. 

Gebhart’s (1962) nesults for Pr = 0.72 are quoted in table 6, where they have 
been recast in terms of the present variables. Whereas the result for 6&,(0) is in 
agreement with the corresponding result of table 5, the value of O;,(O) inferred 
from Gebhart’s calculations bears no comparison with the present results. Apart 
from it being difficult t o  say which of the three cases in table 5 one should com- 
pare with Gebhart’s result, the latter has the wrong sign. No comparison can 
be made with Gebhart’s (1962) graphical data since the latter are presented for 
a value of Pr of 100 only. 



694 J. A .  D .  Ackroyd 

7. Conclusions 
Stress work effects have been considered in detail in steady laminar natural 

convection flows on semi-infinite flat plates. In  agreement with the results of 
Gebhart (1962), it is found that the significance of viscous work effects is deter- 
mined by an Eckert number equal to xgplc,. However, contrary to the view of 
Gebhart (1962, 1969), it is found that the effects of pressure work are always 
rather more important than those of viscous work for both liquids and gases, 
since the significance of pressure work effects is found to  depend on the ratio 
of the above Eckert number and (AT),/%, the latter temperature ratio being less 
than unity. Thus, pressure work depends on the parameter zg,!i’T/(c,AT), so 
that the importance of pressure work relative to viscous work is increased when 
AT is small. 

Exterior property variations in the stationary fluid surrounding the natural 
convection flow are found to be of importance in this problem and must be 
accounted for correctly. In  the simplest possible situations with these property 
variations, in which a given function of state is assumed to be constant, it is found 
that the hydrostatic condition introduces exterior fluid-property variation 
effects which are directly comparable with those of pressure work. 

Further conclusions to be drawn from the present investigation are that varia- 
tions in p, cp and k must be included correctly and that the buoyancy term in 
the natural convection momentum equation must be determined to a higher 
order than is usually the case (cf. equations (10)). Since the conventional Bous- 
sinesq form of the boundary-layer equations (as used by Gebhart 1962; Gebhart 
&; Mollendorf 1969) is incapable of including either exterior property variations 
or transport property variations, the use of this form of the equations must be 
avoided within the context of the present problem. 

I n  the present investigation, one would have wished for more detailed methods 
of description of state and transport property variations than those used in (21) 
and (29). Of particular note here are the methods employed by Poots & Raggett 
(1967) and Poots & Miles (1967) in their studies of variable property effects in 
forced convection and film condensation, respectively. However, the use here 
of  their high degree polynomial approximations to state and transport property 
data would have tended to obscure the importance of the parameter ATIT, 
particularly in its role (in conjunction with the Eckert number) of describing 
pressure work. 

Since the Eckert number xgp/c, is likely to be very small compared with unity 
in most practical circumstances, it follows that stress work effects will be of little 
significance. Usually, turbulent flow will have occurred well before the Eckert 
number has increased (with z) sufficiently for stress work to be of any importance. 
Furthermore, higher order boundary-layer effects (Yang & Jerger 1964), pro- 
viding additional corrections to f and 8 of order Re-4 (Re defined in (13)),  will 
usually dominate stress work effects. However, as Gebhart (1 962) has remarked, 
for perfect gases (/3 = 1/T) a t  low temperatures, the Eckert number (and, there- 
fore, the significance of stress work) is increased. Another situation in which 
stress work might be of more importance could occur near the critical point 
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since both p and cp  are singular there. This aspect is undergoing further in- 
vestigation. 

So as to provide some comparison with Gebhart’s (1962) results, the effects 
of stress work and the associated exterior fluid properties and transport property 
variations on the plate shear stress (cc f”(0)) and heat transfer rate (cc e’(0)) have 
been estimated for air and water a t  room temperature and pressure conditions. 

The author wishes to express his gratitude to Dr I. M. Hall for his interest in 
the investigation and many useful discussions. 
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